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DISTINGUISHING PU METAL FROM PU OXIDE USING
FAST NEUTRON COUNTING

Jérôme M. Verbeke, George F. Chapline, Leslie F. Nakae, Steven A. Sheets
Lawrence Livermore National Laboratory

P.O. Box 808, Livermore, CA 94551

ABSTRACT

We describe a method for using fast neutron counting with scintillator detectors to simultaneously determining
the α-ratio and the effective neutron multiplication factor keff for fissile materials using fast neutrons. Our
method is a generalization of the Hage-Cifarelli method for determining keff for fissile assemblies which utilizes
the shape of the fast neutron spectrum. In this talk we show that the fast neutron spectra generated by UO2 and
Pu metal samples and directly recorded in a liquid scintillator can be used to deduce the α-ratio of PuO2
samples.

INTRODUCTION

Methods based on time-correlated neutron signals have long been used to characterize fissile materials. Typi-
cally one uses 3He tubes to record the arrival times of neutrons from the fissile source, and then by segmenting
the arrival times using time windows of varying width, one can use the statistics of the number of neutron
counts in the time window as a function of the width of the time window to characterize the neutron source.
Unfortunately the cross-section for neutron capture in 3He is only large enough for the purposes of collecting
these counting statistics after the fission neutrons have been thermalized in a moderating material. Therefore
the time windows must be at least tens to hundreds of microseconds long in order to pick up the time correlation
signals. In the case of a strong neutron source such as Pu this means that many fission chains will be generated
within the time windows. Because the neutron time correlations of interest are generated by individual fission
chains, the time correlation information that can be extracted using 3He tubes is diluted.

Liquid scintillators on the other hand, can detect fission neutrons at their initial high energy, because the
reaction used for detection is inelastic scattering of neutrons primarily on hydrogen, producing a recoil proton
from which scintillation light is promptly produced. In contrast to 3He tubes which can hardly detect any
fast neutrons, liquid scintillators cannot detect any neutrons below 1 MeV, because the recoil proton for such
neutrons do not produce enough scintillation light to distinguish them from the light produced by background
gamma-ray interactions with the scintillator. At energies above 1 MeV, neutrons travel at a fraction of the speed
of light, and can thus be detected within 100 nanoseconds for detections systems of the order of 1 meter in size.
One no longer needs to open time windows as long as 100 µs to pick up the correlation signal with 3He, but
only as long as 100 ns. These shorter time windows will greatly reduce the number of overlapping chains within
a time window and we will be in a regime where time windows encompass neutrons from single or mostly a
few fission chains.

This report describes our efforts to use the time correlations of fast neutrons together with their energy spec-
tra as measured directly in a liquid scintillator array to distinguish Pu metal from Pu oxide and also determine
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Figure 1: Object in the middle of the 77 liquid scintillator array.

the α-ratio of the Pu oxide. The liquid scintillator array used to obtain the results that we will discuss below is
illustrated in Fig. 1. If the object at the center of the array contains a multiplying material, each spontaneous
fission will typically generate a chain of detected neutrons in the liquid scintillator array. The fission chain will
also generate gamma rays, but in the case of Pu the majority of the gamma rays are associated with Pu α-decay.
An important difference between Pu metal and Pu oxide is that the α particles produced by the α-decay of Pu
carry enough energy to cause 18O to emit a neutron with an average energy of 1.9 MeV via an (α ,n) reaction.
These neutrons are emitted randomly, and in the case of Pu oxide the emission rate of these neutrons is compa-
rable to the rate of neutron emission due to spontaneous fission. However, the energy spectra of the fission and
(α ,n) neutrons are different. We will show in the following that these differences can be exploited to determine
the α-ratio, i.e. the ratio of the number of (α ,n) neutrons to spontaneous fission neutrons.

DESCRIPTION OF PU OBJECTS MEASURED FOR THE REFERENCE NEU-
TRON SPECTRA

The algorithms developed in this paper rely upon the knowledge of two important neutron energy spectra: (a)
the energy spectrum of fission neutrons, and (b) the energy spectrum of O(α ,n) neutrons. If these two reference
neutron energy spectra are sufficiently distinct, an arbitrary measured neutron energy spectrum should be re-
constructable by combining the two reference spectra weighed appropriately.

To produce pure neutron spectra for both fission neutrons and O(α ,n) neutrons, we need sources that will
primarily produce these neutrons of interest.

Metallic plutonium

For objects containing only gram quantities of plutonium, the system does not multiply, and the neutron emis-
sion will be dominated by the spontaneous fission of 240Pu. For kilogram quantities of metallic plutonium, the
multiplication can be significant, i which case the fission neutron rate is dominated by induced fissions in 239Pu.
In general, the fission neutron energy spectrum will be a mix of 240Pu spontaneous fissions and 239Pu induced
fissions. Fortunately, the fission neutron energy spectra for both 240Pu and 239Pu are very similar, as shown in
Fig. 2. Therefore, the fission spectrum of objects containing plutonium will be insensitive to multiplication.
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Figure 2: Energy distributions of neutrons from (a) 240Pu spontaneous fission (red), (b) 239Pu 2 MeV induced
fission (green), O(α ,n) reactions in (c) PuO2 (blue) and (d) UO2 (magenta). Fission spectra from Ref. [1], (α ,n)
spectra computed using SOURCE-4C [2].

In Fig. 3(b), we show the spectrum of energy deposited in our liquid scintillator by the fission neutrons for
a bare 2.35 kg plutonium ball of density 15.92 g/cm3 consisting of 93.88% 239Pu, 5.96% 240Pu, 0.13% 241Pu,
0.37% 241Am plus trace amounts of other isotopes.

Plutonium dioxide

For the oxide form of plutonium, namely PuO2, the fast neutron spectrum will also contain a contribution
from (α ,n) neutrons. We have found from computer simulations that the ratio of the (α ,n) neutron rate to
the spontaneous fission neutron rate, also referred to as the α-ratio is of the order of 0.8. This α-ratio is
a consequence of the fact that 240Pu is a very strong spontaneous fission neutron source, and therefore in
general the neutrons coming out of PuO2 will contain comparable numbers of fission and $α ,n) neutrons. If we
were able to turn off fission reactions for both 239Pu and 240Pu, we could measure the O(α ,n) neutron energy
spectrum produced by the plutonium decay α-particles. While this would be possible in simulation, fission
reactions cannot be turned off in nature. Of course, one might try using a theoretically derived (α ,n) neutron
spectrum to separate an observed fast neutron spectrum into a fission piece and an (α ,n) piece. Unfortunately,
converting a theoretical neutron spectrum into a liquid scintillator spectrum would require knowing how to
convert an intrinsic neutron energy spectrum into a spectrum of liquid scintillator pulses with the pulse shape
that one somewhat arbitrarily identifies as a neutron. This is very difficult to do in practice.

While we have a α-ratio of the order of 0.8 for PuO2, the α-ratio is of the order of 30 or more for UO2 (for
an uranium composition close to HEU). This means that the vast majority of the neutrons emitted by uranium
dioxide are O(α ,n) neutrons. Measuring the spectrum of neutrons coming off of UO2 would be roughly equiv-
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alent to measuring the O(α ,n) neutrons directly, without much pollution from fission neutrons. If it happened
that the energy spectra of the O(α ,n) neutrons from PuO2 and UO2 are similar, we could substitute PuO2 with
UO2 to estimate the energy spectrum of PuO2. Fig. 2 shows the energy distribution of O(α ,n) neutrons (mainly
from 18O) for both PuO2 (blue) and UO2 (magenta). The (α ,n) neutron spectra from PuO2 and UO2 are very
close; therefore when analyzing the fast neutron spectrum from objects containing PuO2 one can use the UO2
(α ,n) spectrum as a surrogate for the PuO2 (α ,n) spectrum. The objects used for measurement of the O(α ,n)
spectrum were 3 UO2 objects of weights 1485.9, 1463.5, and 1516.7 g. The uranium in these objects consisted
of 93.4% 235U, 5.7% 238U, 0.86% 234U. The oxygen consisted in 99.8% 16O, 0.04% 17O and 0.2% 18O. The
total 18O mass was 1 g, which is the source of the (α ,n) neutrons.

The 3 uranium oxide objects were located in the middle of our array of liquid scintillators depicted in Fig. 1.
The spectrum of energy deposited in the liquid scintillator by the UO2 neutrons is shown in blue in Fig. 3(a).
Because the UO2 objects are weak neutron sources, we need to subtract the background that was present during
the measurement to get to the UO2 neutron spectrum. A 15-hour background spectrum was taken within 2
days of the experiment. The neutron energy spectrum from that background measurement is shown in green in
Fig. 3(a). The rate of that background is 1.6 n/s and is likely due to cosmic-rays. Since the count rate for the
measured objects is 13.52 n/s, the detection system system is measuring background neutrons 12% of the time.
Thus, the blue curve in Fig. 3(a) contains both the UO2 neutrons and 12% of background neutrons. Subtracting
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Figure 3: Fast neutron energy spectra. The UO2 curve represents 1800 s of data, the background 53,442 s,
and the Pu metal ball 596 s. The measured count rates for the UO2 objects, background and Pu metal were
13.52 n/s, 1.6 n/s, and 9123 n/s, respectively.

the background spectrum in green from the UO2 spectrum in blue, we obtain the background-suppressed UO2
neutron spectrum shown in blue in Fig. 3(b).

Regarding the fission neutrons emitted by both the spontaneous fissions of 238U and the induced fissions in
235U, since only 2 to 3% percents of the neutrons are due to fission in UO2, the red curve in Fig. 3(b) would
have to be shifted down by almost 2 orders of magnitude before being subtracted from the blue curve to produce
a pure (α ,n) neutron spectrum from uranium decay α-particles on oxygen. We can thus see that the normalized
U fission curve would very small compared to the observed UO2 curve, and therefore the effect of subtracting
the U fission spectrum would be negligible. Given the resemblance between the (α ,n) neutron energy spectra
from UO2 and PuO2 (see Fig. 2), we will from this point on use the (α ,n) neutron energy spectrum from UO2
as a substitute for the (α ,n) neutron energy spectrum for PuO2.
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MOMENT EQUATIONS WITH DIFFERENT MULTIPLICATIONS AND EF-
FICIENCIES FOR (α ,n) NEUTRONS AND FISSION NEUTRONS

The times of arrival of the neutrons in each of the liquid scintillator cells were recorded. Randomly splitting the
sequence of time tags into N segments of length T — where T is of the order of nanoseconds to hundreds of
microseconds — one can count how many neutrons arrive in the first segment, how many in the second segment,
in the third one, etc. and build distributions bn(T ) of the number n of neutrons arriving in the segments of length
T . For the sake of illustration, one such count distribution is shown in Fig. 4. By repeating this procedure for
segments of different lengths T , multiple count distributions bn(T ) can be obtained.

These count distributions bn(T ) can be used to determine the strength Fs of the spontaneous fission sources
in the object, the efficiency ε of the liquid scintillator array, and multiplication M of fissile material [3]. We
will show these count distributions can also be used to determine the rate of neutrons from the (α ,n) reactions.
This will be shown by way of the first three moment equations for the count distributions. The first moment of
the count distribution bn(T ) is [5, 6]

C̄ (T ) = [ε f q f (M f ) [M f +α (Mα −1)] ν̄sFs + εαqα (Mα)αν̄sFs]T (1)

where Fs is the strength of the spontaneous fission source in units of spontaneous fissions per second, α is the
ratio of (α ,n) neutrons to neutrons produced by spontaneous fission, ε f q f and εαqα are the detection efficiencies
for fission and (α ,n) neutrons, and M f and Mα are their neutron multiplications. q(M)M is usually referred to
as the escape multiplication and is given by

q(M)M = M− (M−1)/ν̄ (2)

The symbols ν̄ and ν̄s are the average numbers of neutrons emitted per induced and spontaneous fissions,
respectively. They can be written as ν̄ =

∑8
n=1 nCn and ν̄s =

∑8
n=1 nCs

n where Cn and Cs
n are the probabilities of

emitting n neutrons per induced and spontaneous fissions, respectively. The upper limit of 8 on the summation
sign is the largest number of neutrons that known isotopes produce per fission. It should be noted that ν̄ depends
on the energy of the neutron inducing fission.

We see in Fig. 2 that the energies of the neutrons from the reaction (α ,n) on oxygen are typically higher
than the fission neutron energies. Indeed, the mean fission neutron energy is about 1 MeV while the mean
(α ,n) neutron energy on oxygen is 2 MeV. This has two effects: (a) the average multiplicity ν̄α due to (α ,n)
neutrons will be higher than the average multiplicity due to fission neutrons; (b) The detection efficiencies for
(α ,n) neutrons εα and fission neutrons ε f will be different as well. Indeed for the case of PuO2 the efficiency
for detecting the oxygen (α ,n) neutrons in our liquid scintillators will be significantly higher than for fission
neutrons, because the energy spectrum for the (α ,n) neutrons is peaked around 2 MeV where the intrinsic
efficiency of the detector is relatively large, whereas almost half the fission neutrons have energies below 1
MeV where the intrinsic efficiency of our liquid scintillators is very small.

The slope of Eq. 1 is the average count rate

R1 = ε f q f (M f ) [M f +α (Mα −1)] ν̄sFs + εαqα (Mα)αν̄sFs (3)

The second and third moments of the bn (T ) distribution, normalized by the count rate, are

Y2F (T ) =
[ε f q f (M f )M f ]

2

ε f q f (M f ) [M f +α (Mα −1)]+αεαqα

[D2s +[(M f −1)+α (Mα −1)]D2]

(
1− 1− e−λT

λT

)
(4)
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Y3F (T ) =

[
ε f q f

(
M f
)

M f
]3

ε f q f
(
M f
)[

M f +α (Mα −1)
]
+αεα qα

[
D3s +

[(
M f −1

)
+α (Mα −1)

]
D3
](

1− 3−4e−λT + e−2λT

2λT

)

+2

[
ε f q f

(
M f
)

M f
]3

ε f q f
(
M f
)[

M f +α (Mα −1)
]
+αεα qα

(
M f −1

)[
D2sD2 +

[(
M f −1

)
+α (Mα −1)

]
D2

2
](

1− 2− (2+λT )e−λT

λT

)
(5)

where λ is a time constant related to the transport of the neutrons in the measured object and the detection

system, the parameters D2s, D2, D3s and D3 depend on nuclear data, and are given by D2s =
∑8

n=2 (
n
2)C

s
n

ν̄s
and

D2 =
∑8

n=2 (
n
2)Cn

ν̄
, D3s =

∑8
n=3 (

n
3)C

s
n

ν̄s
and D3 =

∑8
n=3 (

n
3)Cn

ν̄
.

The fission cross-sections for fission and (α ,n) neutrons are nearly the same for all the energies of interest.
Therefore, if we neglect the small difference between ν̄α and ν̄ , we can set Mα = M f ≡ M. The system of
equations 3 through 5 now has 5 unknown parameters: M, ε f q f , εαqα , α , Fs. Defining R2F and R3F as the
asymptotical values of Y2F (T ) and Y3F (T ), and following Cifarelli-Hage, we can contemplate writing the ratio
R3F/R2

2F to determine the multiplication M:

R3F

R2
2F

=
2(M−1)D2 [D2s +(1+α)(M−1)D2]+D3s +(1+α)(M−1)D3

[D2s +(1+α)(M−1)D2]
2

(
R1

ε f qMν̄sFs

)
(6)

Unfortunately, we cannot use expression 6 directly to determine the multiplication because of the presence of
too many unknown parameters: M, α , ε f , and εα .

We can replace the two efficiencies by a single parameter by making use of the theoretical fission and (α ,n)
spectra shown in Fig. 2 to calculate the ratio εα /ε f . Calling this ratio rε we have

R3F

R2
2F

=
2(M−1)D2 [D2s +(1+α)(M−1)D2]+D3s +(1+α)(M−1)D3

[D2s +(1+α)(M−1)D2]
2

[[
1+α

(
M−1

M

)]
+ rε

α

M

]
(7)

The efficiency ratio rε depends on the theoretical fission and (α ,n) neutron spectra and the characteristics of
the neutron detector. For our liquid scintillators we find rε ∼1.602. Given a value for rε one can in principle
use Eq. 7 to solve for the multiplication as a function of α . Unfortunately this equation is now a cubic equation
rather than the quadratic equation in the α = 0 case considered by Cifarelli and Hage.

As an alternative we can use the observed liquid scintillator spectrum to directly evaluate the quantity[
1+α

(M−1
M

)]
+ rε

α

M in Eq. 7. In particular, if we neglect the background contribution, fitting the observed fast
neutron spectrum to a sum of fission and (α ,n) spectra yields two coefficients whose ratio ρ should be equal to

rε α

M+α(M−1) . Given this additional experimental input, one can rewrite Eq. 7 as

R3F

R2
2F

=
2(M−1)D2 [D2s +(1+α)(M−1)D2]+D3s +(1+α)(M−1)D3

[D2s +(1+α)(M−1)D2]
2

[
1+α

(
M−1

M

)]
(1+ρ) (8)

Using the definition of ρ , we can write the following relationship between α and M:

α =
M

rε

ρ
−M+1

(9)

In the limit of small ρ , α→ ρ

rε
, while in the limit of large α , ρ→ rε

M−1 so it becomes very difficult to determine
the α-ratio from the spectral shape when α is large. Substituting Eq. 9 into 8, we find that α becomes the
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solution of the following quadratic equation:

2D2

(
αrε

ρ
−1
)[

D2s +

(
αrε

ρ
−1
)

D2

]
+(1+α)

[
D3s +

(
αrε

ρ
−1
)

D3

]
=

1+ ρ

rε

1+ρ

R3F

R2
2F

[
D2s +

(
αrε

ρ
−1
)

D2

]2

(10)

In the next sections, we show that this equation together with the spectral information in the liquid scintillators
can be used to solve for the α ratio and the multiplication.

LIQUID SCINTILLATOR TIME CORRELATION RESULTS

For the 2.35 kg Pu ball previously described, the count distribution for T=1 µs, and the moments Y2F (T ) and
Y3F (T ) are shown in Fig. 4. The total time is shared among the 6 time gates in such a way as to keep the errors
on the Y2F (T ) and Y3F (T ) values for the different time gates approximately equal. Fast neutron counts are not
re-used among different time gates. These data correspond to a measurement of 113 seconds, 21.2 seconds of
which contributed to the 1 µs time gate, and the remaining time was shared among the other time gates. The
values of R1, R2F and R3F can be extracted from the graphs.
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Figure 4: Count distribution bn (T ) for the 1 µs time gate, Y2F (T ) and Y3F (T ) for the Pu ball and T between
5 ns and 1 µs, along with their theoretical reconstructions in green. The set of parameters used for the moment
reconstruction (M,ε f ,α)=(2.1, 4.6%, 0.006) was determined using the measured moments and the spectral
information.
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Fig. 5 shows the results for a PuO2 sample containing 8.72 g of plutonium. The measurement thereof was
much longer as the weight of PuO2 was just a few grams.
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Figure 5: Count distribution bn (T ) for the 1 µs time gate, C̄ (T ), Y2F (T ) and Y3F (T ) for the PuO2 sample and
T between 5 ns and 1 µs, along with their theoretical reconstructions in green. The set of parameters used for
the moment reconstruction (M,ε f ,α)=(1.06, 5.1%, 0.86) was determined using the measured moments and the
spectral information.

LIQUID SCINTILLATORS SPECTRAL INFORMATION

In this section we describe experimental results which illustrate how the information contained in the spectrum
of energies deposited by the fast neutrons in the liquid scintillator cells can be used to differentiate metallic
plutonium from plutonium dioxide. For the measured PuO2 sample, the spectrum of energies deposited by the
fast neutrons is shown in green in Fig 6, along with the Pu metal neutron spectrum in red and the pure (α ,n)
neutron spectrum from α-particles on oxygen in blue (the latter two directly copied from Fig. 3(b)). In Fig. 7
we show that the red and blue spectra can be added with suitable weights to reconstruct the green curve. In
particular, by adding the 240Pu spectrum pre-multiplied by 0.45 to the (α ,n) spectrum pre-multiplied by 0.55,
one obtains the reconstruction spectrum of energies deposited shown in red in Fig. 7(b). On the other hand,
when one measures the Pu metal ball, the weights that are optimal for the reconstruction of the spectrum of
deposited energies are 0.995 of the 240Pu spectrum and 0.005 of the (α ,n) spectrum. So we find that just
measuring the spectrum of energies deposited in a liquid scintillator by fast neutrons is sufficient to distinguish
Pu metal and Pu oxide.

Setting ρ=1.24, the solution to Eqs. 9-10 with M ≥ 1 is α = 0.86±0.08, M = 1.06±0.09. The exact value
of 0.8 for α is within 1 standard deviation of our solution. Using Eq. 4, we determined the value of ε f to be
5.1%, while Eq. 1 implies a spontaneous fission source rate of 662± 57 neutrons/sec. Although not exactly
the same strength as the true value of 519 n/s, the implied spontaneous fission rate is within 20% of the correct
answer. If we measure 10 times longer, the solution with M ≥ 1 becomes α = 0.84± 0.02, M = 1.05± 0.02,
ε f =5.3%, and the spontaneous fission source rate becomes 638± 11 neutrons/sec. For the metallic plutonium
ball, our algorithm gives ρ=0.005. The solution to Eqs. 9-10 with M≥ 1 is α = 0.006±0.0001, M = 2.1±0.04.
The value of ε f is 4.6% and the source strength is 149,015±2,700 neutrons/sec, which is off the true value by
less than 1.5%, or less than 1 standard deviation.
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Figure 7: Reconstruction of the PuO2 objects using the sum of two weighed energy spectra.

CONCLUSION

In this paper, we have shown first of all that measuring the energy spectrum of the fast neutrons using a liquid
scintillator allows one to distinguish the metallic and oxide forms of plutonium. In addition, combining this
information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the α-ratio without
explicitly knowing the multiplication. Given the α-ratio one can then extract the multiplication as well as the
239Pu and 240Pu masses directly from the moment equations. In principle the same techniques could be used to
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distinguish metallic Pu from other compounds of Pu, such as PuF2, where (α ,n) neutron emission is significant.
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